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Abstract Quantifying sector-resolved methane fluxes in complex emissions environments is challenging
yet necessary to improve emissions inventories and guide policy. Here, we separate energy and agriculture
sector emissions using a dynamic linear model analysis of methane, ethane, and ammonia data measured

at a Northern Colorado site from November 2021 to January 2022, By combining these sector-apportioned
observations with spatially resolved inventories and Bayesian inverse methods, energy and agriculture methane
fluxes are optimized across the study's ~850 km? sensitivity area. Energy sector fluxes are synthesized with
previous literature to evaluate trends in energy sector methane emissions. Optimized agriculture fluxes in

the study area were 3.5 larger than inventory estimates; we demonstrate this discrepancy is consistent with
differences in the modeled versus real-world spatial distribution of agricultural sources. These results highlight
how sector-apportioned methane observations can yield multi-sector inventory optimizations in complex
environments.

Plain Language Summary Improving our knowledge of the locations, magnitudes, and types of
methane sources is important for implementing effective emissions mitigation technologies and regulations.
Methane emissions are often challenging to quantify because a wide variety of sources can emit methane,
and these disparate sources are often intermingled. We demonstrate how a dynamic linear model can use
multi-month time series of two tracer gases, ethane and ammeonia, to effectively separate methane emissions
from the energy and agriculture sectors. Incorporating these data into a Bayesian inverse analysis refines

the magnitude and distribution of methane fluxes from each sector. Our analysis reveals that methane from
agriculture is several times higher than inventory estimates. While this is in part due to the spatial distribution
of sources, more monitoring is needed to improve agriculture emissions factors. Energy sector emissions
factors optimized in this work are consistent with other regional studies of energy sector methane emissions.
A synthesis of these works demonstrates a regional decline in energy sector emissions despite a concomitant
increase in oil and gas extraction; however, current emissions are similar to 2008 estimates.

1. Introduction

Methane has ~30x greater global warming potential than carbon dioxide over a 100-year timescale. United States
methane inventories estimate that the energy and agriculture sectors each contribute about a third of total U.S.
anthropogenic methane emissions (Maasakkers et al., 2016). Refining energy and agriculture inventories is an
important step toward identifying emissions reduction strategies. However, energy and agriculture infrastructure
are often present in the same areas, which creates difficulty accurately apportioning methane emissions to each
sector. Observational studies must overcome this attribution hurdle when quantifying emissions from these two
important sectors.

Here, we use tracer gas measurements to constrain energy and agriculture methane emissions in a 850 km? area of
Northern Colorado. This region is characterized by large livestock developments intermingled with tens of thou-
sands of oil and natural gas wells exploiting the Wattenberg Field (WF), and thus presents a significant inventory
optimization challenge (Figures 1a and 1b). We quantified methane, ethane (an energy emissions tracer), and
ammonia (an agriculture tracer) mixing ratios (Figure 1c) using an open-path, mid-infrared dual-comb spectrom-
eter (MIR-DCS) (Coddington et al., 2016; Giorgetta et al., 2021; Ycas et al., 2018) and a cavity ring-down spec-
trometer (CRDS). A multivariate linear regression separated methane mixing ratios from our multi-month time
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series into contributions from the energy and agriculture sectors. In contrast to the more common static linéat N
regression employed by other studies with hour-to-day length time series, we adopted a dynamic linear mod§l o
(DLM) approach to capture the expected temporal variations in regression coefficients more accurately (Kilf; ﬁ
et al., 2019; Pollack et al., 2022; Yacovitch et al., 2014, 2015). A Bayesian inversion then used the DLM-dcriva ~N
energy and agriculture sector methane observations and an atmospheric transport model to optimize energy aygl ~U
agriculture methane inventory fluxes within the study's 850 km? area of sensitivity (for derivation of the sen@- s
tivity area, see Section 2.5).

4

o

(2]
o
Results from the energy sector are synthesized with previous regional measurements and historical data. Sin%
the first study of WF energy emissions in 2008, barrel of oil equivalent (BOE) energy production within bogl
the study's sensitivity area and the larger WF has increased several-fold while emissions have slightly decreaseg; é"
This trend is the result of declining mean WF emissions factors (EFs), which, after dropping 2.9 & 0.4 kg CHg/ 3
BOE (~75%) between 2008 and 2017 have stagnated at 0.4 + 0.2 kg CH,/BOE since. As a consequence, fu

WF production increases may yield increasing methane emissions. In contrast, inferred agricultural mcmaz‘lncg
fluxes were 3.5X greater than inventory estimates. We demonstrate that this discrepancy arises partially fro'q_li
the spatial distribution of livestock which is not captured in the inventory model. Our work highlights that Iac-grm
gas measurements can separate emissions from different sectors even in complex emissions environments @ﬁlz
avoiding sectoral misallocation, and reinforces the importance of further monitoring to refine inventory m&lﬂﬂ:
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2. Materials and Methods 53
D .

First, we discuss the collection of time series methane and tracer gas data, and subsequent sector apportio; n.@ei:

o

i

using a DLM. Next, we give a brief description of the atmospheric transport model and sector-resolved emis
inventory used in this work. Finally, we describe the Bayesian inversion approach which generates the opti

]
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posterior emissions inventories.

2.1. Observational Data Collection

FA1IEaID 9]q

Methane (CH,), ethane (C,H,), and water (H,0) concentrations were measured at the Platteville Atmosp
Observatory (PAO, {40.182, —104.725}) from 1 November 2021 to 17 January 2022 with an open-path MIR-
instrument; ammonia (NH,) was measured with a commercial CRDS, (While two instruments were used i
work, in the future all four gases could be measured using a single DCS instrument with adequate spectral ¢
age (Herman et al., 2021).) Figure 1c shows the dry air CH,, C,H,, and NH, mole fraction time series rep
in ppm ([pmol/mol]). Subsequent analysis relies on periods when all three species were measured. The st
estimated sensitivity area (black dashed rectangles, Figures la and 1b) encompasses 850 km? around PA!
denotes the area within which measurements substantially constrain methane emissions. Further informati
the DCS system and experimental setup at PAO are provided in Texts S1 and S2 in Supporting Information
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2.2. Dynamic Linear Model Tracer Gas Analysis

'E_au”uo A

Energy and agriculture contributions in a methane time series can be extracted using correlations with ethane

&

ammonia (Kille et al., 2019). Generally this is achieved by fitting the methane data to a linear regression m
comprised of energy sector methane (Veueryy = fi [C2Hs)), agricultural sector methane (yags = f2 [NH3]), aba
ground term (f,), and a Gaussian noise term (¢):

[CH4] = fo + Ai[C:He] + B2 [NH3] + €

a|nJ 1oy Afel

3

This model is appropriate because the majority of methane emissions within the study's sensitivity area are fr
energy and agriculture. While landfills emit substantial volumes of methane, estimated landfill fluxes within
work's sensitivity area are <1% of predicted contributions from energy and agriculture (Text S3 in Supporti
Information S1).

‘a8 Jo

Fluctuations in the §,, #,, and f, regression coefficients are expected; the background methane concentration
varies diurnally as the boundary layer height changes, and the two tracer gas coefficients, #, and f#,, change
emissions from different sources are transported to PAQ. Since a static linear regression cannot model all su
variations without sub-dividing the ~2-month time series into arbitrarily smaller segments, we instead perfo
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Figure 1. Energy and agriculture sector methane sources are intermingled around the Platteville Atmospheric Observatory (PAQ) measurement site. The study's
sensitivity area is outlined in the black dashed rectangle centered on PAO, while county borders are outlined in black. (a) Thousands of wellheads (shown as a dens
map) extract oil and gas from the Wattenberg Field (WF, red outline). Locations of other down-stream components of the extraction process are not shown. This wi
sensitivity area covers ~19% of the WF. (b) Major agricultural developments called concentrated animal feeding operations (CAFOs, color coded by livestock and
scaled to relative expected emissions magnitude), are widely distributed and spatially overlapped with energy infrastructure. (c¢) The full multi-month methane, eth:
ammonia, (expressed as dry mixing ratios) and water time series recorded at PAQ.

5

NH; 0.10 r ! b ] u ' =

[ppm] 0.00 uvul. Lli*' -U-LU\-L-. -”‘L.l ) '&ll‘k \1&}- LJU‘L l.l'L-I-l‘JI- ......J.J‘.L.h ﬂhﬁ J-;‘ g

H,0 00| a1 . 8

(%] B e e T U O e 3
[}'OD T T T T T T T T T T T

Nov 08 15 22 Dec 08 15 22 Jan 08 15 3

2022-Jan 3

(o]

2

@

&

D

uo Aueuqiq auljuQ As|IM ‘sjeulnor NOV A9 '€£6S50L19€202/6Z0L 0L/1op/wod AsjimAieiqijauljuo sqndnbe//:sdiy wouy papeojumoq ‘z ‘202 'L008Y 6L

nl"l [ | : §
A\ Geophysical Research Letters 10.1029/2023GL105973 S
AMD SPACE SCIENCES E
o

N

b B

a) ) o
40.6°N 40.6°N - ol
a

40.4°N 40.4°N — 3
3

r. w

40.2°N 40.2°N - g
? o

(@)

40.0°N — 40.0°N ————— 9
@ Cattle | 2

e e @ Dairy =

39.8°N ™\ _| Wells / km? r 39.8°N ™| Poultry| 3
» Shee =

396N . \%_, 39.6°N-L_ . . 7lp =
e}

1055'W  105.0°W  1045°W  104.0°W 1065W  1050W  1045W  1040W Q@

<5

c) 4.00 32
1ol bl o ol o <3
pml | o bt W kool 4l s A Mi‘n.a.w.u L kil o U WW o o3
025/ : ' ' : ' ' ’ ' ' "33

5 Lol s s bl o sl £
T ] T ] T T Ll 1 Ll T T g

3

o]

3

7]

o

>

o

o

[e]

=}

o

=

S

S

=

=9s

$nJ 10y Aseaqi suguQ A9

=}

the tracer gas analysis using a DLM (West & Harrison, 1997). Methane data are modeled with the observati
equation,

[CH4]; = F:gi +v, v~ N[0,V]

and the system equation,
6 =061 +w, o ~NI[OW],

where ¢ is an index representing data time steps. Tracer gas observations, along with a constant unity term whi
models the intercept, are represented by the regression vector F; = (1, [C2Hs],, [NHz],). Observations are assumed
be subject to Gaussian noise v, with a mean of zero and a variance V, (defined here as the variance of the point-wi
difference of the methane time series). The state vector 8, = (§, .5, .f,,) evolves over time as a function of the €
state vector and the evolution variance vector W,. Because the variance is difficult to directly estimate and may not%
time-invariant, DLMs are often solved using a discount factor & instead as a proxy for the “memory” of the systell
over time (West & Harrison, 1997). The discount factor is defined as § = P,/(W, + P,), where P, is the prior varian
corresponding to a state vector with zero stochastic change (W, = 0). In that limiting case, § = 1 (irrespective of

actual value of P) and the DLM is identical to a static linear regression model. An optimal discount factor can
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determined through minimizing the model's mean standard error, but in practice this minimization becomes exp
sive for large data sets such as ours. Instead, 100 DLM fits were performed over the full times series data with dlscougl o
factors sampled from a random uniform distribution spanning [0.98, 0.999]; the mean values from the 100 DLM fl?p
are used throughout. (Discount values below 0.98 lead to numerical instability; data where the fractional vanan% N
of either f, or #, was greater than 100% of the fit value are excluded in subsequent analysis. DLM-derived f; valugy ~U
were consistent with region-wide background methane concentrations; see Text S4 in Supporting Information 51)3

ve

2.3. Atmospheric Transport Modeling

D pues
OJ pepeowmo

Influence footprints in a 6° X 6° domain centered on PAO were calculated with the STILT-R atmospheric trar&
port model and 3-km High Resolution Rapid Refresh (HRRR) meteorological data (Benjamin et al., 2016; F
et al., 2018; Lin, 2003). Each influence footprint H(z,.T,|z,,T;) (units of [ppm m? s/umol CH, ]) connects secmr-specn.@

emissions throughout the spatial domain, at location z; and time T, to observed sector-apportioned methane muu.@ -
ratios at PAQ (z,) at time 7). Footprints were calculated for each hour in an 8-week period of observations from Novcrg @
ber and December 2021. Each footprint is the sum of a 48-hr duration back trajectory of 100 particles originating frqgl =

—

o

PAQ, calculated at 0.1° x 0.1° resolution and hourly step size with hyper near field effects enabled. tg i (g
<30T

e3¢

2.4. Emissions Inventories 35 o
oo

Energy and agriculture emissions are estimated using a 0.1° X 0.1° resolution sector-resolved methane invergofy 3.
derived from the 2012 US EPA GHGI (Maasakkers et al., 2016). The energy sector, XEnergy (units of lpmolfnf,sﬁ, ED
= —

is the sum of IPCC categories 1B2b (Natural Gas Production + Processing + Transmission + Distribution T
1B2a (Petroleum); coal methane emissions are not considered (IPCC, 1996). The agriculture inventory, x etgt’ % P
2

the sum of IPCC categories 4A (Enteric Fermentation) and 4B {Manure Management). '2_3 ‘;
235

2.5. Bayesian Inversion o % :
® 0

Sector-resolved methane time series, (Yg,q,u Y aqq)» ©an be modeled as the product of time-independent mclﬁa@é
inventories, (X, Xa,,)s and the combined set of time-varying influence footprints, H, plus an error term =T g
<o 8.

YEnergy = H XEnergy + € g 3_3

Yagi = H Xawi + € 5 8o

330

Bayesian inverse modeling uses observational constraints (_VD‘:mgy J Aa,n) to generate maximum a posteriori plgbge:;
il 1M Posterior Prior o
bility (MAP) estimates, x Xiperey/ Agti using the prior information provided by the inventories, » XEnerey / Agsi (Cus\?’_br% NS
et al., 2020). The observation vector y&ﬁu /Agn T8 the hourly mean mixing ratios of energy and agriculture meiﬁarcr)e 8
=

averaged from the 2-min time series. Following other studies, analysis is restricted to measurements within the lpu#s
of 11:00-16:00 local time when the simulation's boundary layer is well mixed and better captured by the mct&'rE o
logical models (Bianco et al., 2022; Fasoli et al., 2018; Kunik et al., 2019; McKain et al., 2015; Sargent et al., 201&
This restriction yielded a tDtal of 238 valid data points for each observation vector. The H matrix contains the corr® *
sponding STILT footprint for each valid hour, where each footprint is restricted to a 5.8° X 5.8° domain centered @<
PAO at 0.1° resolution for a total of 3,422 state vector elements; footprints were flattened and stacked to yield L%
final H matrix with shape (238 x 3,422). Variances for the diagonal prior and observational error covariance rnatg
ces were estimated using a restricted maximum likelihood (RML) approach (Michalak, 2004; Michalak et al., 2005[

Analysis of the averaging kernel sensitivity matrix indicates the posterior inventory is constrained by observatioss S
in an 850 km? area centered around PAQ. This sensitivity area is highlighted with a dashed rectangular outline
Figures 1, 3, and 4. Further details on the inverse analysis are provided in Text S5 in Supporting Information S1.

€L6 0

r Nov

19}

3. Time-Resolved Sector Apportioned Methane
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We first examine the DLM tracer gas results which provide key observational constraints for the Bayesian imr
sion. Three examples, shown in Figure 2, demonstrate how the DLM analysis captures the evolution of tracer
coefficients and associated uncertainties as different sources are transported to PAO. During periods with a |
tracer gas concentration or little variation in the tracer gas, uncertainty in the respective coefficient increas
Additionally, an increased correlation between methane and one tracer gas reduces the respective coetf1c1en
uncertainty.
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Figure 2. Three methane plumes (a—c) illustrate how the DLM apportions methane into contributions from the energy and agriculture sectors. The tracer gas
coefficients (dashed lines, left axis) are shown with uncertainties in gray shading. In addition, the top panel shows both the full modeled methane concentration (solid
line, right axis) and the measured methane concentration (red dots, right axis). The second and third rows show the ethane and ammonia measurements (blue and gree
dots, right axis). Panel (d) compares the DLM-derived §, coefficients from the full time series with f, coefficients calculated from COGCC sample data. Panel (e)

compares /3, coefficients at PAO with other studies performed in Northern Colorado (Eilerman et al., 2016) and California's San Joaquin Valley (Miller et al., 2015).
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DLM-derived coefficients can provide insight into emission source characteristics. Figures 2d and 2e show ke
density estimates of the energy (f,) and agriculture (#,) tracer gas coefficients over the multi-month obser

tion period. The B, coefficient has been observed to vary as natural gas is extracted, processed, and transport
(Cardoso-Saldafia et al., 2019; Peischl et al., 2013). Ethane and methane mole fractions for natural gas sampl
collected after 2010 in the WF by the Colorado Oil and natural gas Conservation Commission (COGCC) provi
a direct comparison to our estimates for 8, (Figure 2d) (Colorado Oil and Gas Conservation Commission, 202

ﬂéiéﬂ suiu

ﬁﬂ@

$3)|

These data are collected from a range of sample locations, including well casings (bradenheads, well tubi

fa\

and surface, intermediate, and production casings), produced gas, and separators and water tanks. The 3, valug,s
determined from the PAO data overlap with the lower end of well casing and the higher end of separator and wa
tank data, while being most consistent with measurements of produced gas.

@

e vo

Similarly, g, is expected to vary as emissions from different livestock species can have substantially differ
ratios of methane and ammonia concentrations (Golston et al., 2020). Other sources of variation could inclu
atmospheric chemistry effects such as deposition and reactivity (primarily for NH,). We compare our /f, resu
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Figure 3. The spatial distribution of energy sector methane emissions are optimized with a Bayesian inversion using the energy sector methane time series observed
at PAO. (a-b) Prior (x{" ) and posterior (xm‘;';‘*) energy sector methane flux maps remain largely similar in both distribution and magnitude of emissions within®
the sensitivity region of the study area (black dashed rectangle). (c) The Posterior-Prior difference indicates a slight reduction in emissions north-east of PAQ. (d)

Comparison of this work's estimated mean emissions factor to other studies of the larger WF. A notable decrease in emissions factors is apparent from 2010 to 2017. (;
Estimated WF methane emissions are calculated using the EFs from (d) and WF energy production volumes (black line). Despite increasing production from the regio
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with two mobile measurement studies in Figure 2e. While extensive sampling of ammonia/methane rati
throughout Colorado are not available, studies in both the San Joaquin Valley of California and Northern Col
rado overlap well with f, results obtained at PAO, indicating a consistent, if broad, distribution of £, values
agriculture across the western United States (Eilerman et al., 2016; Miller et al., 20153).

Significant variations in tracer gas coefficients observed in this analysis emphasizes the difficulty in determini
a unique set of energy and agriculture coefficients, even for measurements conducted in a single location, Desp
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these complexities, the DLM approach successfully generates energy and agriculture sector-apportioned methafe
time series ‘g‘n":@y, l\::i) which provides observational constraints for inventory optimization, é
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In order to provide emissions estimates with quantified uncertainties, an ensemble of 100 inverse analyses wefe
performed for each sector, with each inversion using prior and observational error variances drawn from
D
o

o
=}

=44
—
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Figure 4. Comparison of the original (top row) and re-distributed (bottom row) agriculture sector methane inventory and posterior results supports localizing g %Q
emissions at CAFO sites. (a-b) Posterior (x*,’\‘::f”“ ] agriculture methane within the study area's sensitivity region (black dashed rectangle) are more localized amunda o 8
PAO than in the prior (x::;’ ). (c) Difference between prior and posterior emissions are significant, with a several-fold increase in emissions to the north-west. The r a 5
change in agriculture methane emissions between the redistributed prior (d) and posterior (e) are smaller than with the original inventory prior, as illustrated by the 8 Z @
difference map (f). == I
(7] E o
® o
o ©
D
< N

optimal range determined using an RML approach. Inversion results were evaluated on several metrics, inclugy w

ing the posterior's reduced chi-square (y?) value, and changes in the coefficient of determination (AR?) and rog E
mean square error (ARMSE) between observed (yO%) and predicted (yrir and yPoserior) mixing ratios (Kungk 2>
et al., 2019; Tarantola, 2005). Optimal inverse results were identified as having a y? close to 1 (Text S5 T C
Supporting Information S1). Finally, we compare mean fluxes from x™" and xPosrior within the 850 km? sen% by
tivity area identificd by the averaging kernel sensitivity matrix. All prior uncertainties quoted for comparison@ 5
posterior results are calculated following (Maasakkers et al., 2016). (Mean observed, prior, and posterior diurngl 2
energy and agriculture methane mixing ratios are shown in Text 86 in Supporting Information S1).

4.1. Energy Sector

Inverse analysis results for the energy sector are shown in Figure 3. On average, the inversions achieved!
x* = 0.98, a RMSE reduction of 12%, and a 13% increase in R°. Posterior mean methane fluxes within thi g
study's sensitivity area (78 + 33 nmol CH, m~2 s7!) agree within uncertainty with the prior (100 + 53 nm#i =,
CH, m~ s7!), although posterior emissions were slightly reduced north-east of PAO (Figure 3c). A constant err% =
in the DCS measurement of ethane cannot account for the comparable mean prior and posterior fluxes (Text § 2
in Supporting Information S1).
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From these results, we next calculate an EF for the study's sensitivity area. EFs quantify the amount of methate N
emitted per volume of energy produced by a process, and are useful for generating and improving emjssm@ N
inventories. Using the posterior energy flux and oil and gas production volumes within our study's 850 kj‘& NS
sensitivity area, we estimate a mean EF of 0.4 + 0.2 kg CH,, emitted per BOE produced (Skinner et al., 2023 o
For context, we also calculate historical EFs for the WF using data from multiple airplane mass balance, flag{ ~U
sample, and satellite inversion studies spanning 2008 to 2021 (Alvarez et al., 2018; Cusworth et al., 202%; s
Fried & Dickerson, 2023; Lu et al., 2023; Peischl et al., 2018; Pétron et al., 2012, 2014; Riddick et al., 202%; 3.
Shen et al., 2022). Finally, we estimate inventory EFs for the WF and our study's sensitivity area (Maasakk
et al., 2016). Combined, this synthesis (Figure 3d, data provided in Text S8 in Supporting Information S
demonstrates a clear decline in mean WF EFs from 2010 to 2017, with post-2017 EFs remaining steady. O
study, though sensitive to a smaller central region of the overall field, yields EFs consistent with the larger W

(o}

pHie

!ﬁ'ib

wx
Y wou} papeo
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From this analysis, we estimate how total energy emissions have changed over time in the WF by calculatidi =
the product of each EF and the Field-wide energy production (Figure 3e). While we note that applying thg.;g
waork's EF to the entire Field is an extrapolation, trends in both new well installations and energy production a:e<
closely mirrored in our study's sensitivity area and the larger WF (see Text S9 in Supporting Information S&. @
declining trend in total energy sector methane emissions since 2010 emerges from this ensemble of mdeper%egt-c
measurements, although current emissions are comparable to 2008 levels. State and federal air quality re guiagoa 3
likely contributed to this decline by encouraging the adoption of emissions reduction practices and te,ch.nolog_@
Changing well infrastructure may have also contributed (Text S9 in Supporting Information S1). Determinin;
relative importance of regulations and infrastructure requires further analysis.

1

4.2. Agriculture Sector

oldde ayy
o 'Rojim-Aiel
9 Aaum’MeJquau”uo

Results of the agriculture optimization are shown in Figure 4. The mean posterior had a y*> = 1.04, and a Rg,
reduction of 22% and a R? increase of 41% compared to the prior. Within the sensitivity area, fluxes around

increased from a prior mean of 14 + 16 nmol CH, m~ s~ to a posterior mean of 49 + 22 nmol CH, 1114352J o
(Figures 4a and 4b). This 3.5X + 2.4x increase is surprising given that the total permitted livestock populﬁlél\
around PAO has remained roughly constant since 2012 (National Agricultural Statistics Service, n.d.). Wlﬂ'en'a
threefold error in livestock EFs is possible, we instead investigated whether a spatial misallocation of ermsg)
could explain the enhanced posterior flux in the sensitivity area. A comparison of the prior (Figure 4a) to

tered concentrated animal feeding operation sites (CAFOs, Figure 1b) demonstrates that fluxes are not luca%
around CAFQs. This is a result of methodology: the agriculture inventory was generated by probabilisti

distributing county-level livestock headcounts throughout each county using multiple livestock occurrence iﬁo
ability maps (Maasakkers et al., 2016). For some livestock, such as beef cattle which graze in pastures for par;gé‘uf
the year, this is a logical approach; however, poultry and dairy cattle are often on CAFOs throughout the anilaa
lifespan.

S pydzj-au
w

“£/650L19£202/6Z0L°0L/10p

o
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To determine if localizing inventory emissions at CAFOs improved agreement with observations, county-level ¢

emissions were redistributed to CAFO sites (Text S10 in Supporting Information S 1) proportionate to the fracnfg w
of total county-level animal equivalent emissions units located at each CAFO (Golston et al., 2020). Total coung!':
level emissions were unchanged, reflecting our assumption that agricultural emissions have remained cons
The redistributed prior had a mean flux of 30 + 34 nmol CH, m~2 s~! within the sensitivity area, which mcrsa'%ﬂi o

in xg‘;;‘l"s?‘{; ;1043 + 29 nmol CH, m~2s~' comparable to the original x""‘“m"r results. The redistributed posteri ﬂ& 2

had a similar ¥ value (0.96) but a smaller RMSE reduction of 11% and a smaller R? increase of 25%, consist
with the smaller differences (Figure 4f) between the redistributed prior (Figure 4d) and posterior (Figure 4
compared to those observed with the original inventory (Figure 4c).
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5. Conclusions

We constrain energy and agriculture methane emissions in a ~850 km? area in Northern Colorado by analyziig
measurements of methane, ethane, and ammonia with a DLM and Bayesian inversion. Comparison with the 2082 =

=2
gridded EPA inventory within the study area showed a small decrease in energy sector methane emissions whi &
~ Q

was consistent with a decrease in energy EFs from 2010 to 2017 observed by other studies. State and federal 2

regulations and changing energy infrastructure likely contributed to this decline. While current energy emissioffs ©
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are lower than 2010 levels, they are comparable to 2008 observations, which indicates that further reductioms <

are necessary to meet Colorado's greenhouse gas emissions reduction targets of 50% by 2030 and 90% by 2040 o
relative to 2005 levels. A significant increase in posterior agricultural methane emissions helped identify 1bsug;.
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in the spatial distribution of agricultural fluxes. Redistributing emissions to CAFO sites improved agreemeft p,
between the redistributed prior and posterior, although posterior agriculture emissions in the sensitivity arggl o
remain ~50% higher than the redistributed prior. Refining the spatial distribution of emissions inventories § s
critical for regional scale studies using aircraft or satellite observations where multiple tracer gas obscrvatloﬂk 3
are not present (Cusworth et al., 2021; Peischl et al., 2018). While conclusions from our single-sensor study cg g_
be improved with a distributed sensor network, it is noteworthy this approach can refine sector-resolved methagg @
emission across areas comparable to the footprints of many methane observing satellites (Cusworth et al., 2023;

Ware et al., 2019).
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